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ABSTRACT 

The paper illustrates how probabilistic physics-based 
models can be used for risk-based condition assessment 
and life prediction of aircraft jet engines, including the 
uncertainties in maintenance activities. Although this 
paper focuses on engines, the proposed approach can 
be extended elsewhere. Probabilistic modeling includes 
all significant uncertainties that affect engine reliability, 
such as flight conditions, loading history, manufacturing 
deviations, material properties and behavior under 
random loading and maintenance activities. Maintenance 
uncertainties include those related to NDI techniques and 
operator’s skills. The paper shows the uncertainty effects 
of different NDI techniques, maintenance intervals, 
operator skills, etc. on the engine reliability. Unscheduled 
maintenance rates are computed for given a 
maintenance schedule. 

INTRODUCTION 

In contrast to the current engine maintenance 
engineering based on field data and empirical FMECA 
studies, STI, in collaboration with GEAE, proposed a 
physics-based stochastic approach to maintenance 
engineering that is based on the detailed integration of all 
design and post-design aspects and uncertainties 
including significant manufacturing variabilities, 
maintenance activities and cost aspects.  

By developing physics-based stochastic models for 
idealizing the operating environment, aero-thermal 
loading, structural behavior and material progressive 
damage under variable loading, the maintenance 
engineering and cost analysis is approached from an 
advanced physical understanding and modeling of the 
engine behavior. Only by using such a physics-based 
stochastic approach, can the engine life-cycle cost 
process be adequately understood and controlled from 
the design stage.  

The actual approaches to risk-based maintenance cost 
analysis, that are based solely on simple Weibull life 
models developed for only very limited tests or field data, 
suffer severely from having a weak foundation by 
neglecting the stochastic physics of failures. And the 

maintenance costs are very sensitive to the to the engine 
component failure risk estimates.    

The overall scope of the research effort was to develop a 
prototype engineering computational tool for predicting 
the unscheduled maintenance event rates by developing 
physics-based stochastic models that are based on 
actual flight and component design data for current 
engines. Based on this physics-based stochastic models 
approach the key engine component reliability measures 
can be computed. These computed reliability estimates 
are used to perform a risk-based optimal-cost 
maintenance analysis  

TECHNICAL APPROACH 

The prototype engineering tool developed by STI under 
this project, called ProMACOR (Probabilistic 
Maintenance for Cost Reduction) is based on a physics-
based reliability engineering approach that bridges and 
integrates intimately the structural reliability concepts and 
tools with the classical reliability engineering concepts 
and tools.  

To increase ProMACOR’s practicality, its computational 
reliability results are also converted to equivalent 
reliability (failure) models that are currently used in 
practice, such as the Weibull failure models and Uniform 
Hazard Rate (Exponential) reliability models.  

PROMACOR APPROACH 

The integration between the structural reliability tools and 
the reliability engineering tools is the essence of the 
ProMACOR approach. This integration brings with it the 
capability of stochastic modeling of the physics of 
failures within the classical reliability engineering 
framework (and further to cost modeling).  

In the classical reliability engineering approach the 
designer or maintenance engineer has no ability to 
understand and control the effects of any environment or 
component changes on risk and maintenance costs. In 
contrast, in the physics–based reliability engineering 
approach the engineer understands the stochastic 
physics of failure and can control the effects of changes 



on risk and costs. The physics-based reliability 
engineering approach links engineering decision to 
reliability and costs. Of great importance is that this 
approach also reduces the needed amount of testing 
data. 

ProMACOR brings a new dimension to engine design 
and maintenance by the fact that the comparison can be 
made directly in terms of risks and costs. This type of 
what-if cost analysis forms the basis for an optimized 
design-maintenance approach for fleets of aircraft 
engines. By examining how the variation of different 
parameters affects component risk prediction accuracy 
and life-cycle cost estimates, it would be possible to 
perform trade studies that maximize the value of the 
funding used in research for new and existing aircraft 
designs.   

The ProMACOR prototype software has basically two 
important functional options: (i) For an accepted reliability 
it computes the required maintenance intervals to inspect 
the investigated component (the results depend also on 
uncertainties in operational environment, component 
behavior, selected inspection techniques) and (ii) For an 
anticipated maintenance strategy it computes component 
reliability and associated maintenance costs for obtaining 
an optimum engine design over a family of alternate 
designs.  

Using ProMACOR a designer or maintenance engineer 
can quickly perform what-if analyses to see how different 
design modifications affect a component’s risk of failure, 
the predicted life and/or the induced maintenance costs. 
For a designer, what-if analyses represent a key aspect 
for obtaining robust, affordable and durable cost-effective 
designs. Through what-if analyses, the designer  
understands, in much more detail, the behavior of his 
design, so that he can make the optimal technical 
decision. 

The ProMACOR probabilistic condition assessment and 
life prediction analysis of an engine component include:  
 (i) stochastic modeling of flight profiles  
 (ii) stochastic modeling of component loading, 
environmental surface conditions, material and structural 
properties; this step may include modeling of the 
component surface boundary conditions, such as 
pressure and temperature variations, contact surface 
constraint effects on stiffness and damping, material 
property variations, manufacturing deviations from the 
baseline geometry, etc.      
 (iii) probabilistic component stress/strain analysis 
to compute multiaxial stress/strain state in the 
component for given steady and dynamic boundary 
conditions that are time dependent, such as variable 
blade stresses induced by speed variations or variable 
thermal stresses in a hot component due to the transient 
thermal effects, etc.     
 (iv) probabilistic component reliability analysis or 
risk analysis for initial no-usage conditions (no 
deterioration due to progressive failure mechanisms is 
included). This risk analysis is to identify the “infant 

mortality” failure risk due to a poor component design, 
material defects, or due to mishandling, etc. (this is the 
responsibility of OEM engine designer and in 
ProMACOR is considered to input by the analyst).    
 (v) stochastic modeling of component stress and 
strain histories at critical locations; this step includes the 
construction of equivalent stress random histories based 
on the stochastic mission profile inputs and component 
stress computations.     
 (vi) probabilistic condition assessment and life 
prediction based on stochastic cumulative damage 
mechanics models for crack nucleation stage and 
stochastic fracture mechanics-based models for crack 
propagation stage (effect of maintenance is not 
included). This step includes the maintenance 
uncertainties. 

ProMACOR predicts probabilistic life of an engine 
component, including both the crack initiation and crack 
propagation stages, using the following cumulative 
damage models: 

Crack Initiation: Stochastic Cumulative Damage Models 
(fatigue and creep)    
 1) Linear Damage Rule (Miner’s Rule)  
 2) Damage Curve Approach  
 3) Double Damage Curve Approach  
 4) Lemaitre-Caboche CDM Model 
 5) Larson-Miller Model (pure creep rupture)  

Crack Growth: Fracture Mechanics-based Models 
(fatigue and creep)    
 1) Forman Model    
 2) Sine Hyperbolic Model   
 3) Modified Sigmoidal Equation Model  

PHYSICS-BASED RELIABILITY ENGINEERING 

The current approaches to engine maintenance cost 
analysis are based solely on FMECA and simple Weibull 
life (failure) models that are developed for very limited 
tests or field data. These practical approaches suffer 
severely from having a weak foundation by neglecting 
the stochastic physics of failures.    

ProMACOR is developed to handle all situations 
including the “break-in” and “wear-out” failure mode 
periods.  However, ProMACOR is developed mainly to 
handle the “wear-out” failure types that are generated by 
progressive damage mechanisms. In the actual version, 
the “break-in” period failures can be included, but it is the 
analyst’s responsibility to define the initial failure 
probabilities due to material defects or poor 
workmanship. Figures 1 and 2 show the failure 
probability curves and hazard rate curves computed for 
three critical crack limits with ProMACOR assuming an 
initial reliability condition defined by (i) a zero initial failure 
probability (at time zero) that corresponds to a situation 
with no “break-in” period, Figure 1, and (ii) a non-zero 
failure probability that corresponds to a situation that 
includes a “break-in” period, Figure 2.  



The basic relationship that links the physics-based 
reliability engineering approach with the classical 
reliability engineering approach is 
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The above equation relates the failure probability within a 
time interval that in fact defines probabilistic distribution 
of component life, to the instantaneous failure probability 
computed at the starting time of the interval and to the 
hazard failure rate variation in the interval. Then, the 
MTBF can be computed integrating the reliability function 
that translates in the equation 
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Equivalent Weibull failure models 

For practicality purposes, equivalent Weibull component 
life models are determined based on the computational 
results of the physics-based reliability analysis.  These 
equivalent “physics-based Weibull life models” have the 
advantage that they can be easily compared with the 
existing Weibull models developed based on component 
field failure data. 

To compute the two parameters of the Weibull 
distribution a least-square error minimization technique is 
used to fit the random sample life data. It can be shown 
by doing some simple mathematical manipulations that 
the Weibull distribution assumes a linear relationship 
between ln(t) and ln(ln(1/1-F(t)))  as follows:  
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By choosing ln(t) as x, the scale on the abscissa, and 
ln(ln(1/(1-F(t))) as y, the scale on the ordinate, the 
Weibull CFD is represented as a straight line in this 
transformed space (these are the coordinates of the 
Weibull paper). Thus, by a simple linear regression in the 
transformed space, the two Weibull parameters are 
easily computed. For equivalent Weibull model the 
instantaneous failure probability is computed by 
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Also, the hazard failure rate at time t is given by 
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Computation of Optimal-Cost Replacement Time: If a 
part has a Weibull wear-out distribution and the cost of 

unplanned failures is greater than the cost of planned 
replacements, there is an optimal replacement interval. If 
the interval is too short, the replacement costs are too 
high. If it is too long, the unplanned failures drive the total 
cost too high.  An optimal replacement strategy finds the 
most cost effective interval for replacing the hardware.  

The optimal replacement interval is the time with the 
minimum ratio of the mean cost to the mean time to 
failure, .  The maintenance cost per unit can 
be expressed as follows: 
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where  = Cost of an unplanned on-line replacement, 
where  and  = Cost of a planned off-line 
replacement before failure. If is greater that one and 
the cost ratio is greater that one, the maintenance cost 
per unit time has a minimum. 
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Non-Destructive Inspection (NDI) Techniques  

Inspection routines are adopted to detect and remove 
cracks with size larger than a rejection limit, resulting in 
the improvement of reliability towards an acceptable 
level. The advantages taken from regular inspections 
can be reduced or even completely lost if the inspection 
technique is not appropriately selected in view of the 
given component or the inspection is not able to detect 
damage indications that would lead to failure before any 
repair action could be taken.  

The rejectable crack size can be used to evaluate the 
following probabilities, where independence between 
additive sizing error and detection is assumed: 

1. The probability PR(a) of rejecting a crack with 
size a, calculated as the product of the detection 
probability and the probability of sizing  the detected 
crack larger than aR: 
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2. The probability PA(a) of accepting a crack 
with size , calculated as the product of the detection 
probability and the probability of sizing  the detected 
crack smaller than aR, added to non-detection 
probability: 
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For a given crack size a, the sum of these two 
probabilities equals unity, since a crack must always be 
either rejected or accepted. For a particular case where 
a > aR the function PR(a) is called the probability of 
correct rejection, while for a < aR the function PA(a) is 



called the probability of correct acceptance. It should be 
observed that PR(a) and PA(a), both depend on the 
reliability of the inspection technique and on the specified 
rejection limit aR. 

ProMACOR can consider the uncertainties related to 
both the crack POD curve and the crack length sizing.  

Reliability-Based Maintenance Analysis 

The effect of NDE inspections on the crack propagation 
process is illustrated in Figure 3. The plots show the time 
evolution of the PDF of crack length in an axonometric 
view and using contour plots (time flows is from right to 
left). The left-side plot corresponds to no NDE 
inspection, while the right-side plot corresponds to four 
NDE inspections at 4000 EFH each. It can be visualized 
from Figure 3 that crack propagation process is a 
diffusion stochastic process with no boundary for no 
NDE inspection and with intermittent “mutation” (or 
reflective “jump-back”) boundaries that have also a 
stochastic nature for repeated NDE inspections. For 
each NDE inspection a stochastic “mutation” boundary is 
placed at a random crack length crossing level. The 
“mutation” boundary has two functions: (i) accept a 
parent crack or (ii) reject a parent crack and produce a 
new kid crack (the crack of the replaced or repaired 
component).   

Probabilistic Crack Growth Process Including Inspections  

Thus, after each inspection new cracks are born due to 
the rejection of the old cracks, i.e. component 
replacement or local repair. The new crack populations 
are kids produced by the rejection of cracks from the 
previous populations. For example after two NDE 
inspections, the new kid cracks can have as parents 
(produced them by rejection-mutation) the rejected 
cracks form the original crack population that was born 
at the starting time or from the next generation of crack 
population produced by the rejected cracks at the first 
inspection. Thus, an accurate stochastic modeling of the 
crack growth process including inspections has to 
include the presence of evolutionary multiple statistical 
populations. 

ProMACOR uses the non-normal probabilistic mixture 
model of populations for predicting component reliability. 
For each crack length population a lognormal probability 
distribution is assumed. This assumption appears to be 
reasonable and slightly on the conservative side as 
shown by repeated simulation studies performed. The 
use of Weibull distribution for crack length population is 
less accurate. 

Component reliability is expressed in terms of the 
instantaneous failure probabilities and reliability indices. 
Based on physics-based reliability analysis, for each 
critical location of a component ProMACOR computes: 

 

1. Crack Length Statistics Evolution with No or 
Multiple Inspection Intervals 

2. Failure Risk Evolution with No or Multiple 
Inspection Intervals 

3. Reliability Index Evolution with No or Multiple 
Inspection Intervals 

4. Hazard Failure Rate Evolution with No or 
Multiple Inspection Intervals 

5. Average Hazard Failure Rates per Inspection 
Intervals 

6. Number of Failures (Removals) per Inspection 
Intervals 

7. PDF of the Parent Crack Length Population after 
Each Inspection 

8. Equivalent Weibull Failure (Life) Models 

9. Posterior PDF of Life Via Bayesian Updating to 
Incorporate Failure Data 

10. Posterior PDF of Crack Size Via Bayesian 
Updating to Include Inspection Data  

For performing reliability-based maintenance analysis, 
ProMACOR has two functional options: (i) For 
anticipated maintenance strategy it computes component 
reliability (Figure 4) (ii) For given reliability level it 
computes the required maintenance intervals (Figure 5).  

Based on reliability analysis results associated 
maintenance costs can be computed. A risk-based 
optimal-cost maintenance strategy can be identified 
(minimum cost with risk constraints). 

The three curve plots in Figure 4 and 5 correspond to 
three different values of the critical crack lengths, namely 
0.20 in, 0.50 in and 0.80 in. The figures compare the 
computed reliability estimates for two basic cases: (i) No 
Inspection and (ii) Multiple Inspections at 4000, 9000 and 
11,000 FHs. The rationale behind selecting these 
inspection times was not to produce an optimum 
maintenance strategy, but to highlight some key aspects 
of problem. An average operator-skill ultrasonic POD 
curve was considered for this numerical investigation.  

By exploring these types of results, important questions 
of the maintenance engineer can be answered. These 
questions include: What is the overall effect of 
maintenance strategy on failure risk evolution and overall 
associated costs? Is the selected maintenance strategy 
efficient from reliability and cost point of view? How 
much does the NDE technique influence the component 
reliability and the overall maintenance costs? How much 
does the operator skills influence the component 
reliability? How much does the crack rejection criteria 
influence reliability?  



Figure 6 shows the failure probability evolutions for the 
two cases, without and with maintenance. From these 
plots it can be noted that if a failure probability of 0.001 is 
accepted, then the component life computed for this 
probability level and for the 0.50 in crack stability criteria 
is about 8,000 FH with no inspection and about 18,000 
FH with three inspections. Further, it can be seen that 
the second inspection at 9000 FH is more efficient than 
the first inspection at 4000 FH.  The first inspection is too 
early and therefore has a more reduced effect. The 
second inspection reduces the failure probability by a few 
orders of magnitude. The size of the downward jumps in 
failure probability evolution after each inspection time is a 
measure of how efficient the inspection at that time is.    

 Figure 7 shows the computed maintenance replacement 
costs assuming that the unscheduled on-line 
replacement is ten times more expensive than scheduled 
off-line replacement.  It can be observed that the effect 
of the inspections is to double the optimal-cost 
replacement time and to reduce the overall replacement 
cost to half of one third. 

Figure 8 shows the effects of the inspection NDE 
technique on the optimal-cost replacement time.  It is 
interesting to note that the use of Eddy Current 
inspection instead of Visual inspection changes the 
optimal-cost replacement time from 13,000 FH to 17,000 
FH and reduces the overall replacement cost by almost 
35%. 

Figures 9 and 10 show the main screens of the 
ProMACOR software for the “Maintenance Strategy” 
input options and the “Risk Analysis” output options, 
respectively.  

CONCLUDING REMARKS 

The paper presents a new, efficient risk-based 
maintenance cost analysis tool for aircraft engines, 
ProMACOR, based on an accurate physic-based 
stochastic modeling of material deterioration under 
random operational conditions.  

Using ProMACOR, the maintenance and design 
engineers can take optimal-cost decisions based on 
accurate estimates of component failure risks including 
maintenance uncertainties 
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Figure 1 Failure Probability and Hazard Rate Evolution for Zero Initial Condition          

 (“Wear-out” shape of hazard rate curve) 

 
Figure 2 Failure Probability and Hazard Rate Evolution for Non-Zero Initial Condition 

(“Bath-Tub” shape of hazard rate curve) 
 

 
 

Figure 3. Effect of the NDE Inspection on Crack Length Probability Density 



 
 

Figure 4. Reliability Analysis Results for Given Maintenance Strategy 

 
Figure 5. Reliability Analysis Results for Given Reliability Level  

 



 
Figure 6. Failure Probability Evolution: (a) No Inspection, (b) With Inspections 

  
Figure 7. Maintenance Cost vs. Removal Time: (a) no Inspection, (b) with Inspections 

 
Figure 8. Maintenance Cost vs. Removal Time: (a) Visual, (b) Eddy Current 

 
 
 
 



 
 

Figure 9. Maintenance Strategy Input Screens 
 

 
 

Figure 10. Probabilistic Risk Analysis Output Screen 


