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Abstract: 
 
Stochastic subspace projection schemes provide efficient ways for building stochastic physics-based 
reduced-order models for accurately solving large-size stochastic mechanics problems. The paper 
introduces a new, fast and accurate approach for predicting large (and small) random mistuning in bladed-
disks using an efficient reduced-order modeling (ROM). The proposed ROM approach is based on a 
stochastic subspace projection scheme called herein the Stochastic Perturbation Matrix (SPM) approach. 
The shown results, plus other in-house numerical tests, indicate that the SPM ROM approach can 
outperform other mistuning ROM approaches in terms of accuracy and computational performance. The 
author believes that the SPM ROM approach will play a gradually increasing role in mistuning 
predictions, and in a relatively short time period will become a popular choice for solving large mistuning 
problems.  
 
1.0 Basic Concepts of Stochastic Finite Element Methods 
 
The problem of simulating stochastic physical systems can be often reduced to that of finding the 
stochastic solution u, for a linearized stochastic PDE operator L, and a applied stochastic forcing function 
Q that has the general form 

 
0Q)t,u(L =+  in Ω                                                                           (1) 

 uu =  on dΩ∂  
 u)u(B = on nΩ∂  
 
where dΩ∂  is the boundary of the domain for which the solution or primary variable is specified (i.e., 
Dirichlet boundary conditions) and nΩ∂ denotes the boundary with natural (i.e., Neumann boundary 
conditions) for which the dual variable (e.g., force) is specified. 
 
Complex stochastic physical phenomena are modeled, with complex stochastic PDEs, which may include 
domains of entirely different physical behavior (as with fluid-structure interaction problems), or may have 
multiple coupled physical fields (as with thermal-mechanical systems).  Thus the actual simulation may 
be a composition of multiple field domains and these PDEs can become highly complex.  Also, accurate 
simulations are rarely linear, though often they are linearized for use in a nonlinear analysis solution (e.g., 
using Newton’s method).  The stochastic finite element method is a way of formulating, or (spatially) 
discretizing, stochastic partial differential equations in simple algebraic system of equations that can be 
efficiently solved numerically.  The stochastic finite element method provides a sound method of finding 
the “optimal” solution, within a given stochastic subspace in which the true stochastic solution belongs.  
Commonly the Galerkin scheme is used for optimality criteria, that is to find ∈u~ S = span (φi), i = 1, …, 
n such that Qu~L + ⊥ S or equivalently 〈( Qu~L + ), v〉 = 0 ∈∀v S  where 〈a, b〉 = ∫Ω a⋅b.  
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2.0 Stochastic Perturbation Matrix Approach 
 
Using finite element method, a linearized PDE can be transformed in a n x n linear algebraic system of 
equations:    

 
)()()( xFxuxK =           (1) 

 
in which u is the solution of the problem, K is the generalized stiffness matrix of the system and F is the 
generalized loading function. All the three terms of the equation (1) are functions of the stochastic input 
vector, x. If the system is stochastic, then the stiffness matrix K is a stochastic matrix. For a realization k 
of the stochastic input vector, kx , the stochastic stiffness matrix variation with respect to the mean 
stiffness matrix (that is assumed to correspond to the input mean vector, x ) can be computed by: 
 

)()(),( kk xKxKxxK −=∆         (2) 
 
where )( kxK  and )(xK  are the stochastic stiffness matrix computed for realization k of the stochastic 
input vector, kx , and the mean stiffness matrix, respectively. For a random realization k of the stochastic 
input vector, equation (1) can be rewritten as follows: 

 
)()()],()([ kk xFxuxxKxK =∆+        (3) 

 
For the sake of simplicity, and without any loss in generality, it is assumed that the generalized loading 
function is a deterministic quantity. Further, if the stochastic stiffness variation in realization k is 
proportional to the mean stiffness by a scalar factor ),( k xxε , then equation (2) can be rewritten:   

 
)(),(),( kk xKxxxxK ε=∆         (4)  

 
Typically, for structural mechanics problems, the stochastic scale (or proportionality) factors ),( k xxε  are 
in the order of few percents, or even less. These proportionality factors describe non-dimensionally, in 
percents, the stochastic system variation, or in other words, the stochastic system perturbation with 
respect to the mean system.  
 
More generally, for a non-proportional stochastic variation of the system, the generalized perturbation 
matrix can be defined by:  

 
),()(),( k

1
k xx∆KxKxxε −=         (5) 

 
The Stochastic Perturbation Matrix (SPM) approach provides an efficient solution to stochastic equation 
(3) by projecting it onto the reduced-size subspace whose basis vectors are computed by the products of 
the generalized perturbation matrix, ),( k xxε , risen at increasing powers (such as the terms of a power 
series) with the mean solution vector, u( x ).   
 
Thus, the SPM basis vectors are defined by the matrix products  

 
)(,( 1j

k xu)xxε − , j =1 to s         (6) 
 
in which s is the number of the SPM basis vectors or the size of the SPM subspace.  
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The SPM solution of the stochastic equation (3) is: 

 

)(,( ,(y( 1j
kk

s

1j
jk xu)xxε)xx)xu −

=
∑=        (7)   

 
in which the coefficients jy  are unknown quantities. They need to be determined before using the above 
equation (7). These coefficients are computed extremely fast by solving a very reduced system of 
equations of size s x s, s << n, that is defined by the similarity transformation of original system from the 
original space to the SPM subspace. It should be noted that the SPM basis vectors belong to the well-
known family of Krylov-Arnoldi-Lanczos vectors that are popular in numerical analysis for fast solving 
of large-size linear systems. 
 
 
3.0 Application of the SPM ROM Approach to Compute the Complex Frequency 

Mistuned Response 
 
The stochastic equation of motions of a bladed-disk system in complex frequency domain can be written: 

 
e

2ωiω f]uZ∆M)M(G)(C∆KK[ a =++−+++      (8) 
 
Using a compact notation for dynamic complex stiffness term, equation (9) can be rewritten: 

 
[ ] )()( ),(~)(~ xfxuxxK∆xK e=+        (9) 

 
The stochastic solution of equation (9) employing the SPM ROM approach is similar to equation (7) but 
is formulated in the complex frequency domain:  

 

)(),(),(y)(
s

1j

1j
j xuxxεxxxu ∑

=

−=        (10) 

 
in which the coefficients jy  are computed fast by solving a reduced complex system of size s x s, s << n, 
for each frequency of interest. For bladed-disk mistuning problems, the reduced-order system size s varies 
typically from 5 to 25 equations. To be applied efficiently, the SPM ROM solution in equation (10) has to 
be applied for all frequencies of interest using the results of a single modal analysis solution for the tuned 
(mean geometry) system. The complex frequency response of the tuned system can be computed for all 
frequencies at any location based on the tuned mode participation factors and mode shapes.   
 
The advantage of the proposed SPM ROM approach versus other random mistuning ROM approaches 
resides in its clean theoretical basis and assumptions with no restriction for large mistuning problems and 
no artificially added model constraints. The SPM ROM approach is perfectly fitted for solving large 
mistuning problems, for both the low-order and high-order system modes, including complex mode 
couplings in veering regions, where other mistuning ROM approaches may produce less accurate results.  
 
4.0 Illustrative Example of A 72 Blade Compressor Blisk System 
 
To illustrate the capability of the proposed SPM ROM approach, a 72 blade compressor blisk model was 
considered. Figure 1 shows the comparative results for the first blade bending mode of the mistuned 
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system using a direct, full-model (exact) analysis and the SPM ROM approach. Figures 1a and 1b show 
the mistuned blade tip amplitudes for different engine orders of the aero-forcing function.   
 

 
   

a) Engine Order 2     b) Engine Order 3 
 
Figure 1. Blade tip amplitude computed using full-model analysis (red) and SPM ROM approach (green) 

 

 
 

Figure 2. Blade tip responses, per simulation (upper plot) and per blade location (lower plot), computed 
using full-model analysis (red) and SPM ROM approach (green) for ten realizations of stochastic input 
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Figure 2 shows the maximum blade tip amplitude, per simulation and per wheel (maximum over all 
system blades) and per blade (maximum over all simulations), respectively, computed using full-model 
(exact) analysis and the SPM ROM approach. 
 

 
      

a) Using full-model analysis       b) Using SPM ROM approach 
 

Figure 3. Computed blade tip response histograms for for full-model analysis and SPM ROM 
 
 

 
 

a) 5 equation ROM size     b) 14 equation ROM size (converged)  
 

Figure 4. Computed blade tip amplitudes using the full-analysis model and the SPM ROM approach, with 
a 5 equation ROM size or 5 basis vectors, and a 14 equation ROM size or 14 basis vectors, respectively. 

Original Blisk Design (red solid line is the full-analysis, green dashed line is the SPM ROM).  
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a) 5 equation ROM size          b) 14 equation ROM size (converged) 

 
Figure 5. Computed blade tip amplitudes using the full-analysis model and the SPM ROM approach, with 
a 5 equation ROM size or 5 basis vectors, and a 14 equation ROM size or 14 basis vectors, respectively. 

Modified Blisk Design (red solid line is the full-analysis, black dashed line is the SPM ROM).  
 
 

Figure 3 shows the computed histograms of blade tip amplitudes in the first blade bending mode for a set 
of 7,200 simulations using the full-model analysis (exact) and the SPM ROM approach. Figure 4 
illustrates the blade tip amplitude transfer function for the first blade bending mode computed using SPM 
ROM for 5 basis vectors and for 14 basis vectors, i.e. ROM size of only 5 and 14 equations, respectively.   
 
Figure 5 illustrates the same blade tip amplitude transfer functions computed using SPM ROM for 5 basis 
vectors and for 14 basis vectors, i.e. ROM size of 5 and 14 equations, respectively, but for a modified 
blisk design with a stiffer disk. It should be noted that the results showing in Figures 4 and 5 indicates the 
the 72 blade mistuned blisk response can be accurately captured by employing a SPM ROM of a size of 
only 14 equations.  
 
Figures 6 through 8 show the use of the SPM ROM approach in combination with response surface 
modeling for reducing random mistuning responses in blisks. A practical application of this kind is the 
optimal repair of FOD-damaged IBRs in depots. The SPM ROM approach is capable of handling 
accurately the large geometry mistuning problems as those of FOD-damaged IBRs.  

 
The mistuned response of the 72 blade blisk system in the first blade bending mode is shown in Figure 6. 
As shown in the figure, the maximum mistuned response occurs at the blades 22, 17 and 63. Our interest 
is on how to change the stiffness of blade 22, or blade 17, or blade 63 to reduce the mistuned response. 
Figure 7 shows the response surfaces of the blade tip amplitude of blade 22 assuming that this is a 
function of the stiffness variations of blades 22 and 63, and blades 22 and 17, respectively. All the other 
blades were considered to have the same mistuned stiffnesses (fixed perturbed geometries) as those that 
were used for the simulation shown in Figure 6.  
 
Figure 8 shows the response surfaces of the maximum blade amplitude around the blisk wheel assuming 
that this is a function of the stiffness variations of blades 22 and 63, and blades 22 and 17, respectively. 
All the other blades were considered to have the same mistuned stiffnesses (fixed perturbed geometries) 
as those that were used for the simulation shown in Figure 6. 
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Figure 6. Simulated mistuned blade tip amplitude pattern for the 72 blade blisk system 
 

Both Figures 7 and 8 illustrate that the mistuned response surfaces are highly nonlinear with respect to 
blade stiffness variations (solution points are also shown). A two-level hierarchical approximation was 
employed for modeling the mistuned response surfaces (Ghiocel, 2004, 2005).  

 
It should be noted that the current industry practice of building response surface approximation using 
quadratic regression using DOE sampling rules fails shortly, as indicated in Figure 7. The low-amplitude 
response areas can be totally missed if a typical quadratic regression DOE-based approach is employed. 
The same conclusion is valid for the results shown in Figure 8 that illustrates the response surface of the 
maximum response over the blisk wheel. Figure 8 also shows that the effect of varying the stiffness of 
blade 22 is much more significant on the maximum mistuned response than the effect of varying the 
stiffness of blade 63, and it is about the same with the effect of varying the stiffness of blade 17. 
 

 
 

Figure 7. Response surfaces of the blade tip amplitudes for blades 22 as a function of stiffness variation of 
blade pair 22 and 63, and 22 and 17, respectively (see Figure 6). 
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Figure 8. Response surfaces of the maximum blade tip amplitude around the blisk wheel as a function of 
the stiffness variation of the blades of the pairs 22 and 63, and 22 and 17, respectively (see Figure 6) 

 
5.0 Concluding Remarks 

 
The paper proposed a fast and accurate approach for solving large (and small) mistuning problems in 
engine bladed-disks. As shown herein, a potential application of the proposed approach can be the 
optimal repair of FOD-damaged IBRs. The results shown indicate that the SPM ROM approach can 
outperform other mistuning ROM approaches in terms of accuracy and computational performance (very 
reduced ROM size). For the illustrated 72 blade compressor disk case study, the required size of the SPM 
ROM system is of only 14 equations. To simulate mistuned responses only a single deterministic modal 
analysis using the full rotor model is required for computing the tuned system modes. 
 
The SPM ROM approach is perfectly fitted for solving large mistuning problems, for both low-order and 
high-order system modes, including complex dynamic couplings in veering regions. Due to its capability 
of accurately handling large mistuning problems with a high computational performance, the author 
believes that the SPM ROM approach will play a gradually increasing role in future mistuning prediction 
and will become a popular choice for solving large mistuning problems.  
 
The paper also shows that the current industry practice of building response surface approximations using 
quadratic regression based on DOE sampling rules fails shortly for mistuning problems. 
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